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We consider  the s teady-s ta te  problem of the outflow of the detonation products f rom the end of a flat or 
cyl indrical  charge of explosive into a vacuum. We neglect the curvature  of the sonic surface (the Chapman-  .... 
J• surface) and shall consider  it as flat up to the boundaries of the charge.  Problems close in their  s ta te-  
ment were  discussed in [1-3], both in a study of the phenomenon of the sca t ter ing of detonation products and 
with a discussion of questions of the throwing of plates and shells. The ax isymmetr ic  problem of the outflow of 
an ideal gas into a vacuum was solved in [4]. We give below the resul ts  of a calculation of the flow of detona- 
tion products,  r ight  up to considerable dis tances from the detonation front, where,  as follows f r o m  the general  
considerat ions,  it takes on a simple asymptotic  charac te r .  The problem formulated has not been analyzed up 
to the present  time with the aim of studying such asymptot ic  curves.  

In a sys t em of coordinates moving with the velocity of the detonation, the flow of the products is descr ibed 
by the sys tem of equations 

Ov/Ox - -  Ou/Or = O, 

o o 
r~pu + Tr  r~'pv = O, 

u ~ + v  ~+2h(p) = U 2, 

(i) 

where x and r are  the longitudinal and t r ansve r se  coordinates (Fig. 1); u and v a re  the corresponding pro jec-  
t ions of the velocity; p is the density; h(p) is the enthalpy; U is the limiting velocity of the scat ter ing;  and X =0 
in the plane case  and X =1 in the ax i symmetr ic  case. The calculating region is shown in Fig. 1; AO is the 
sonic surface;  AQ is the limiting line of the flow; and Ox is the plane (axis) of symmet ry .  

The flow is descr ibed using dimensionless quantities, so that the boundary conditions assume the f o r m  

u----t, v : 0 ,  p = l  for x = 0 ,  0 ~ r < l ;  (2) 

v = 0 ~ r  x > 0 ,  r = 0 .  

The second condition flows out of the s y m m e t r y  of the problem. In addition, in the neighborhood of the point x = 
0, r = 1, there  is P r a n d t l - M e y e r  flow. To complete the s tatement  of the problem, the equation of state or the 
isentrope of the detonation products must  be selected. Here 

h (p) = S dp/p,  

where p(p) is the p r e s s u r e  with constant entropy. 
accordance  with an isentropic law [5] 

where Y =const  =3.2-3.4 for different explosives. 

In the f i rs t  approximation, the detonation products expand in 

P(P) = PV/7, (3) 

However, this approximation is valid for sufficiently great  
p r e s s u r e s  (on the order  of severa l  kilobars);  with lower p r e s su re s ,  the value of T decreases  to T = 1.35-1.25. 
A more  exact isentrope of the discharge of rea l  detonation products is given in [6] (Hexogen): 

P(P) = Pl"~5(ao --1- alp -4- a~p 2 + asp'~), (4) 

Novosibirsk. Transla ted f r o m  Zhurnal l>rikladnoi Mekhaniki i Teklmicheskoi Fiziki, No. 2, pp. 43-50, 
March-Apri l ,  1977. Original ar t ic le  submitted March 16, 1976. 

This material is protected by copyright in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part registered 
of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, 
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $ 7.50. 

177 



Fig. i 

TABLE 1 

,. P 

~o 

o �84 

i ~ 1fi: 

7 f 

_ 2,0 4,0 
Fig. 2 

0,2 I 0,163333 I 0,150666 I 0,i52766 I 0,180308 ] 0,063i081 0,036 I642 

X 

T A B L E  2 

"Type of 
explc~ive I ~_~cm s 

Hexogen t,66 
Hexogen t , 0 t  
Pentolite t,65 

0,023, t,25 
0,057 1,25 
0,005 t ,35 

where  a i ( i=0 . . . . .  3) a re  interpolation coeff icients ,  and, in [7], the equation of s tate  of pentolite is given: 

p(p, E) = A p E  + Bp 4 + C exp ( - -K/9) ,  (5) 

where  E is the internal energy;  A, B, C, and K a re  constant quantities.  The prob lem formulated was solved 
both using (3) and using Eqs. (4) and (5). 

For  solution of the problem posed, descr ibing the flow of a gas with a supersonic  velocity,  the initial 
data, given at the sonic l ine, must  be used to calculate  the p a r am e te r s  of the flow in some neighborhood AO, 
belonging to the region under considerat ion.  In the plane case ,  the solution given in [1] was used. In the axi-  
symmet r i c  case ,  the p rob lem was solved in [4]; however,  the use of a solution presented  in the fo rm  of tables 
is difficult. A more  convenient r ep resen ta t ion  of the problem can be obtained, taking as independent var iables  

t = x / ( l - - r ) ,  y = l - - r ,  

and, as the sought functions,  the quantit ies 

0 = aretg (v/u), z = In p, o~ = In (u 2 -]-, ~)1/2. 

In these var iab les ,  the sy s t em (1) has the f o r m  (A =1) 

( t - -  tgO)Oe/Ot - -  yOo~/Oy - -  (i  -{- t)OO/Ot + ytgOOO/Og = O; 

y tg O/(i -- y) q- (i -4- t tg O) 0 (z + e) o ot 'Y-g~u ( z ' t - c ~  (6) 

exp(2~) -+- 2h(exp(z)) U ~. 

For  the equation of s ta te  (3), taking account of the insignificant change of the densi ty of the detonation products  
in the region unde r  considerat ion,  the la t te r  equation assumes  the f o r m  

exp (2r t/2 ln((u + t)/(y--l) --  2 exp ((7--1)z)/(7--1)), 

where the last  equation is t r ans fo rmed  taking account of (3). The boundary conditions assume the fo rm  

e = 0 ,  z=0,  0=0 for t=0,  0<y~<t; 
0=0 for t~0 ,  y = t ;  

o~=t~/(y+t)+O(P) fo~ y=0.  

(7) 
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The la t te r  equation is an expansion in s e r i e s  of a solution descr ib ing  lZrand t l -Meyer  flow. We shal l  seek  the 
solution in the f o r m  of the s e r i e s  

0 = ~ F,(y) t", r = ~ Q,(y)t",  z =  ~ Sa(y)t  ~. 
n = i  n ~ t  n = t  

F r o m  (6), taking account  of (7), l imi t ing the d iscuss ion  to the f i r s t  th ree  t e r m s  of the s e r i e s ,  we obtain 

F , = F 2 - - - - 0 ;  Q , = Q a = 0 ;  S i = S ~ = 0 ;  S ~ = - Q ~ ;  

F8 = (2/3)Q~ - -  (y/3)dQ~/dy. 

It is m o r e  convenient  to seek  Q2(y) introducing the function G= [6(T - 1)/y2]Q2,whiehis de te rmined  f r o m  the 
solution of the following boundary-va lue  p rob lem:  

dZG/dy ~ + l/(y--t).dG/dy - -G 2 = O, 
lira y~G(y) = 6, dG/dy = 0 f_or_ y = t. (87 

y.-+O 

Prob l em (8) was solved numer ica l ly .  The r e su l t s  of the calculat ions were  approximated  by polynomials  of high 
power ,  which made it poss ib le  to ope ra te  with analyt ical ,  though c u m b e r s o m e ,  express ions  for  the solution. 
For  Q2(Y) the following express ions  were  obtained: 

7 6 

Q~(y)=i / (~ l+l)  Y, any'* for 0~<y<~0.5; Q~(y)='y~/[6(7+t)] ~_~ ~ , ~ ( l - y )  '~ for 0 ,5~<y~<l ,  (9) 
n~O n~O 

The interpolat ion coeff ic ients  ol n and fin a r e  given in Table  1. The max imal  deviation of fo rmulas  (9) f r o m  the 
n u m e r i c a l  solution does not exceed 0.5%. 

The s y s t e m  of equations (1) with the boundary conditions (2) and the equations of s ta te  given was solved 
by the n u m e r i c a l  method of cha r ac t e r i s t i c s .  As the boundary between the calculat ing region and t h e  vacuum 
the re  was taken a c h a r a c t e r i s t i c  cu rve  c lose  to the limiting. The r e su l t s  of a calculat ion of the plane p rob lem 
of the sca t t e r ing  of the detonation products  of Hexogen [equation of s ta te  (4)] with an initial densi ty p0=1.66 
g / c m  3 in t e r m s  of the line of  the flow (solid l ines ,  r = 0.1, 0.2 . . . . .  0.9) and the line o fequa ldens i ty  (dashed l ines ,  
p =0.9, 0.8, . . . ,  0.1) a r e  given in Fig. 2. With their  propagat ion  over  the detonation products ,  the d ischarge  
waves  of the flow line become  r ec t i l i nea r ,  and the angle of inclination of each flow line to the Oxaxis  approaches  
a l imi t ing  constant  value. In each concre te  ease ,  the re  ex is t s  a function descr ib ing  the values  of the l imit ing 
angles as a function of the flow line 0 (r With sa t i s fac t ion  of the well-known l imita t ions  on 0 (r the inverse  
function r (0) can be cons t ruc ted .  This  function will de sc r ibe  the flow of the detonation products  for  a r b i t r a r i l y  
l a rge  values of x. 

Let us now consider  the flow p a r a m e t e r s  q=  (u2+v2)l/2, 0 =a re t an  (v/u), and p in the polar  coordinates  
R = (x 2 +r2) 1/2 and (fl = a r e t a n  (r /x) .  It is obvious that p ~ 0  as R -,- r162 f r o m  the third equation of s y s t e m  (1) it 
follows that q = q ( p ) - ~ U  as p --~0. 

Since the outflow of the detonation products  t akes  place  into a region (a plane or solid angle) bounded by 
the l imit ing l ines of the flow, while the flow l ines,  with a r i s e  in R,  become  r ec t i l i nea r ,  it is c l ea r  that 0 (R,q~)--~ 
~v as R -~ ~. Fo r  suff icient ly l a rge  values of R, we r e p r e s e n t  the function p in the f o r m  of a power s e r i e s ;  

p (R, ~) = ~ A,~ (~) R -~ .  (10) 
n = t  

The m a s s  flow r a t e  of the gas Ar with R =eons t  is wr i t ten  in the f o r m  

A~p = p(R, T) q(p) cos (0(R, ~) - -  q9)(2~ sin ~)~R i+~A(p. (11) 

Pass ing  to the l imit  R --~ r162 taking account of the above ana lys i s ,  it can be  es tabl ished that the de termining  
t e r m  in (10) has the number  1 + X and is connected with r by the re la t ionship  

t . 1 o~  t d% t*o (~) 
Al+z = --0- hm (2n sin r 0r U (2n sin q~)~' dq) U " 

Thus,  witb sufficiently la rge  R ,  the sca t t e r ing  of the detonation products  is descr ibed  by the p a r a m e t e r s  

q(R, ~) = U, 0(n, ~ ) =  ~, p(n, r = ~o(~)/(UR~+~). 
(12) 

A flow with such p a r a m e t e r s  is ca l led  asymptot ic .  Such a flow can be model led by the outflow of a gas with a 
constant  veloci ty  along t r a j e c t o r i e s  r e p r e s e n t e d  by r ays  going out f r o m  the or igin  of coordinates ;  the value of 
the m a s s  flow r a t e  of gas depends on the angular  var iab le .  T h e ' p r o b l e m  of the asymptot ic  of the sca t t e r ing  of 
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t h e  p r o d u c t s  of  a s t e a d y - s t a t e  de tona t ion  r e d u c e s  to  a s e a r c h  f o r  the  func t ion / z0 ( r  w i t h  r e s p e c t  to  f low p a r a m -  
e t e r s  c a l c u l a t e d  in a f i n i t e  r e g i o n .  A c c o r d i n g  to (12), t h i s  is  equ iva l en t  to  a s e a r c h  f o r  t he  l i m i t i n g  func t ion  
r  To s o l v e  t he  p r o b l e m ,  we u s e  t he  func t ion  r q~), i . e . ,  t he  func t ion  r ( r  found fo r  s o m e  f i x e d  f i n i t e  
v a l u e  of  R. Then  

i o ,  (R, (p) 
~t (R, q)) (2~ sin (p) ~ ~ ' 

and,  us ing  the l a t t e r  r e l a t i o n s h i p ,  f r o m  (12) and the  equa t ion  of s t a t e  (3)-(5) ,  we m a y  c a l c u l a t e  the  f ie ld  of  the  p r e s -  
s u r e  p(R,  9). To s i m p l i f y  the  s u b s e q u e n t  c o m p u t a t i o n s ,  i t  i s  conven ien t  to  a p p r o x i m a t e  (4) and (5) by  an  a s y m p t o t i c  

f o r m u l a :  
p(p) ~ xp~, (13) 

p <<1; the  e f f e c t i v e  v a l u e s  o f  ~r and  7 a r e  g iven  in T a b l e  2. W e  now p o s t u l a t e  tha t  R is  s u f f i c i e n t l y  g r e a t ,  and 
we  f ind  the  change  in t he  ang le  of  i nc l i na t i on  of t he  f low l ine  A0 ,  b rough t  about  b y  the  p r e s s u r e  p(R,  9 ) .  F o r  
t h i s  w e  u s e  an e x p r e s s i o n  f o r  the  i n c r e m e n t  of  t he  t r a n s v e r s e  c o m p o n e n t  of t he  m o m e n t u m ,  o b t a i n e d  f r o m  a 
c a l c u l a t i o n  of  t he  p r e s s u r e  g r a d i e n t  in t h i s  d i r e c t i o n .  T a k i n g  accoun t  o f  (12) and (13), t h i s  g i v e s  

i o ~ (R, ~ )  (14) 
A0 = - -  2~ (?-- t) U(v+i)R(v--l)(i+;~) ~ (R, ~) 0 T 

It is  obv ious  tha t  

*0(r = , ( R ,  r - A0). a 5 )  
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F r o m  (15), taking account of (14), we can obtain 

x t o [sin~ 0_~ ] 
h~(R,  qg) = ~0(q)) --  ~(R,q)) = 2~,(,~_t)~(~+l)sin~,tpR(i+}.)(~,_l ) 0T ~ ~O'(R, qg) . 

Now let  the functions p(R1, q)  and p (R2, r  calculated,  where  R 1 and R 2 a r e  some  suff icient ly g rea t  values  
of R; then the l imi t ing  function g0(q) is ca lcula ted  using the fo rmu la  

t~0 (@ = ~ (nl, r n(7 -l)(~+x)- ~ (n~, r n(2~-'o+s) 
R~'--i)(i+~.) _ R(2~--1)(i+~.) 

making it poss ib le  to use  the p a r a m e t e r s  of the flow, found as a r e s u l t  of a numer i ca l  solution of the p ro b l em 
posed,  to find the p a r a m e t e r s  of the asympto t ic  flow. 

Curves  of the functions /z0@) for  the plane ca se  (i.e., X =0) a r e  given in Fig. 3 (T =3, 2.7, 2.4, and 2 for  
cu rves  1-4, respec t ive ly)  and Fig. 4 [1) the function /z(26, ~fl); 2) P0~P) for  the detonation products  of Hexogen 
with p = 1.66 g/cmS]. The calculat ions show that  in the plane ca se  the function tt0@)/U, in accordance  with (12), 
de te rmin ing  the angular  dis t r ibut ion of the densi ty  of the asympto t ic  flow, is approx imated  to a good degree  of 
a c c u r a c y  by the analyt ica l  dependence 

~o( @)/ U = m ,  cosV(m2~), (16) 

where  ml,  m2, and v a r e  cons tants ,  de te rmined  f r o m  the calculat ion.  The values  of the constants  for  s e v e r a l  
va r i an t s  of the p r o b l e m  a r e  given in Table  3; the table  a lso  gives calcula ted values of U. 

An example  of solution of the a x i s y m m e t r i c  p r o b l e m  is g iven  in Fig. 5, where :  1) P0@) for  the equation 
of s ta te  (3), T =3; 2,3) p(10, (p) and /~0@) for  Hexogen (4) with p0=1.66 g / e r a  3. 

As follows f r o m  the discuss ion,  for  solution of the p rob l em posed,  a calculat ion of the initial sect ion of 
the supersonic  flow accord ing  to p a r a m e t e r s  given at the sonic line is requi red .  In [8], it is p roposed  to con- 
s ide r  the flow of r e a l  detonation prodtmts ,  s t a r t ing  not f r o m  the sonic line, but f r o m  some  plane at which v = 0 ,  
and M> 1, where  M is the Mach number .  A calculat ion of flows with such boundary data cons iderably  s impl i f ies  
the p rocedu re  of the solution of the problem.  A n u m e r i c a l  exper iment  was used to inves t igate  the effect  of the 
p a r a m e t e r  s (with ass ignment  of the s t a r t ing  data in the f o r m  v = 0 ,  M = I + e ,  0 <~<<1) on the flow of detonation 
products  and, in pa r t i cu la r ,  on the f o r m  of the l imi t ing  function/z0@). It was found that with suff icient ly sma l l  
values  of ~ the p a r a m e t e r s  of the flow and the functions p0((p) p rac t i ca l ly  coincide with the cor responding  
values ca lcula ted  in an exact  s ta tement .  For  example ,  with ~ =0.04, in a region containing 90-95% of the flow 
of m a s s  of the detonation products ,  the max ima l  d i f ference  in the functions po(Cp) does not exceed 2% in both 
the plane and a x i s y m m e t r i c  c a s e s .  Thus,  at l eas t  to find the p a r a m e t e r s  of an asympto t ic  flow of detonation 
products ,  weak ly  supersonic  boundary  conditions can be  used, which e l imina tes  the need for  c u m b e r s o m e  ca l -  
culat ing p rocedu re s  for  the initial section.  

As an i l lus t ra t ion of the appl icabi l i ty  of  the asympto t ic  c h a r a c t e r i s t i c s  of a flow of detonation products ,  
obtained above,  let us cons ider  ~he p rob l em  of the throwing of a sphere  by a f lat  cha rge  of explos ive .  We shall  
a s s u m e  that the initial r e m o v a l  of the sphe re  f r o m  the sur face  of the charge  is suff icient ly g rea t  (10 th icknesses  
of the charge) .  The fo r ce  act ing on the sphe re  will be desc r ibed  by  the Newton law 

F (v) : (~ (v) r2p (U --  V) 2, 

where  r 0 is the rad ius  of the sphere ;  p is the densi ty  of the detonation products ;  V is the ve loc i ty  of the sphere ;  
and ~ (v) is an exper imenta l ly  de te rmined  function. In accordance  with the exis t ing exper imenta l  data [9], with 
fully es tab l i shed  superson ic  flow around the sphe re  cr (v) = const  = 1.436. In the polar  s y s t e m  of coordinates  
a l r eady  used, using (12), the motion of the sphe re  is desc r ibed  by the s y s t e m  of equations 

dV __ (~ollo ((p) (U cos ((9 -- qg) -- V) (U 2 _~ V2 ) __ 2 U V  cos (O " r 

d O ~ d R  = (% [X o (~ ) /RU)  tg(~p--cI))(U 2 ~ V ~ - -  2 U V  cos(d) - -  qD)l/~; 
dq>/dR : - -  tg (r - -  (:I))/R, 

where  c0 =3c(v)/'(47rp it0); p~ is the densi ty  of the m a t e r i a l  of the sphere ;  ~ is the angle of inclination of the 
vec tor  of the veloci ty  of the s phe re  to the Ox axis;  and ~p (R) is the t r a j e c t o r y  of the motion of the sphere .  The 
initial data  have the f o r m  R =R0; ~ = 01; V=D;  and @ =0;  D he re  is the detonation r a t e  of the explosive,  taken in 
d imens ion less  fo rm;  01 is the slope of the l imit ing flow line of the detonation products .  

The s y s t e m  of equations is invar iant  with r e s p e c t  to the extension of the coordinate  R; the re fo re ,  all  the 
solutions for  a fixed value of a0 a r e  s i m i l a r :  
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V(ao, a )  = v(t ,  R/Ro), q~(Ro, R) = ~(t, R/Ro), 

i.e., under the assumptions made, the resul t  of the throwing does not depend on the initial position of the sphere 
R 0. The problem posed was solved numerically using the analytical dependence (16) for the detonation products 
of Hexogen with p 0 =1.66 g/era 3. To take account of the limited dimensions and of the distance at which the 
parameters  of the sphere are  fixed in the experiments, the calculation was made up to R -5R 0. The results  of 
the calculation were compared with the resul ts  of experiments on the throwing of steel spheres by a flat charge 
of east Trotyl  and Hexogen 50/50 with the dimensions 110 • 110 • ram. The spheres (several each of two 
radii  r0) were arranged at a distance of 100 mm from the surface of the eJaarge. The p a r a m e t e r s ~  the-a t ,  
celerated spheres were determined by the resul t  of an impact on a Duralium target,  placed at a distance of 
500 mm from the surface of the charge.  In the experiments,  measurements were made of the angles of the 
throwing and the depth of the cavity, using relationships given in [10]; these were used to calculate the velocity 
of the spheres.  Figure 6 gives the calculated dependence of the velocity of the spheres V n normal to the sur -  
face on the parameter  a 0 (solid curve); the figure also gives experimental data with the indicated scat ter  of the 
results ,  averaged over several  experiments.  A comparison showed sat isfactory agreement between the ex- 
perimental and calculated data. 

The authors express their th.nks to Yu. I. Fadeenko, in discussions with whom the statement of the 
problem under consideration arose and was refined. 

L I T E R A T U R E  C I T E D  

1. R. Hill and D. C. Pack, "An investigation, by the method of character is t ics ,  of the lateral  expansion of the 
gases behind a detonation slab of explosive," Proc, Roy. Soc., Ser. A., No. 1027 (1947). 

2. A.A.  Deribas,  The Physics of Explosion Hardening andWelding [in Russian], Izd. Nauka, Novosibirsk 
(1972). 

3. A.A. Deribas and G. E. Kuz'min, "The motion of a metallic tube under the action of explosion products," 
in: The Dynamics of Continuous Media [in Russian], No. 8, Izd. Inst. Gidrodinam. Sibirsk. Otd. Akad. 
Nauk SSSR, Novosibirsk (1971). 

4. O.N. Katskova and Yu. D. Shmyglevskii, ,Axisymmetrical  supersonic flow of a f reely expanding gas with 
a flat transitional surface," in: Computational Mathematics [in Russian], Izd. Akad. Nauk SSSR, Moscow 
(1957). 

5. F .A .  Baum, L. P. Orlenko, K. P. Stanyukovich, V. P. Chelyshev, and B. I. Shekhter, The Physics of 
Explosion [in Russian], Izd. Nauka, Moscow (1975). 

6. V . F .  Lobanov and Yu. I. Fadeenko, ,Scattering of real  detonation products f rom the lateral  surface of a 
charge," in.- The Dynamics of Continuous Media [in Russ~_u], No. 7, Izd. Inst. Gidrodinam. Sibirsk. Otd. 
Akad. Nauk SSSR, Novosibirsk (1971). 

7. W.A. Walther and N. M. Sternberg, "The Chapman-Jouguet isentrope and the underwater shock wave 
performance of pentolite," in: Proceedings of the Fourth International Symposium on Detonation, White 
Oak, Maryland , 1965, Office of Naval Research, Washington (1967). 

8. K . P .  StanyuKovich, Not-Fully-EstablishedMotions of a Continuous Medium [in Russian], Izd. Nauka, 
Moscow (1971), p. 423. 

9. A.I .  Hodges, "The drag coefficient of very high velocity spheres," J. Aeronaut, Sci., 2_44, No. 10, 755 

(1957). 
10. V.M. Titov and Yu. i. Fadeenko, ,Throughpuncture  with meteor impact," Kosmich. Issled., 1__00, No. 4, 

589 (1972). 

182 


